

Enterprise Java Applications on VMware

Best Practices Guide

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 2 of 20

© 2010 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual
property laws. This product is covered by one or more patents listed at
http://www.vmware.com/download/patents.html.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All
other marks and names mentioned herein may be trademarks of their respective companies.

VMware, Inc
3401 Hillview Ave
Palo Alto, CA 94304
www.vmware.com

http://www.vmware.com/download/patents.html
http://www.vmware.com/

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 3 of 20

Contents

1. Introduction .. 5

1.1 Overview .. 5

1.2 Purpose .. 5

1.3 Target Audience ... 5

1.4 Scope ... 5

2. Enterprise Java Applications on vSphere Architecture 6

3. Enterprise Java Applications on vSphere Best Practices 7

3.1 VM Sizing and Configuration Best Practices Overview ... 7

3.2 vCPU for VMs Best Practices .. 7

3.3 VM Memory Size Best Practice ... 7

3.4 VM Timekeeping Best Practices .. 11

3.5 Vertical Scalability Best Practices .. 12

3.6 Horizontal Scalability, Clusters, and Pools Best Practices .. 13

3.7 Inter-tier Configuration Best Practices ... 14

3.8 High Level vSphere Best Practices.. 15

4. Troubleshooting Primer .. 16

4.1 Open a Support Request Ticket... 16

4.2 Troubleshooting Techniques for vSphere with esxtop ... 16

4.3 Java Troubleshooting Primer ... 18

5. FAQ: Enterprise Java Applications on vSphere 19

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 4 of 20

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 5 of 20

1. Introduction

1.1 Overview

This Enterprise Java Applications on VMware Best Practices Guide provides information about best
practices for deploying enterprise Java applications on VMware, including key best practice
considerations for architecture, performance, design and sizing, and high availability. This information is
intended to help IT Architects successfully deploy and run Java environments on VMware vSphere™.

1.2 Purpose

This guide provides best practice guidelines for deploying enterprise Java applications on VMware
vSphere. The recommendations in this guide are not specific to any particular set of hardware or to the
size and scope of any particular implementation. The best practices in this document provide guidance
only and do not represent strict design requirements because enterprise Java application requirements
can vary from one implementation to another. However, the guidelines do form a good foundation on
which you can build—many of our customers have used these guidelines to successfully virtualize their
enterprise Java application. This document focuses on details that pertain to the deployment of enterprise
Java applications on VMware vSphere and it is not necessarily a best practice guide for pure Java. For
specific Java best practices refer to the vendor documentation for the JVM you are using.

Virtualizing enterprise Java applications does not require a change in your Java coding paradigm and any
performance enhancements that you have done on physical are transferrable as is to the vSphere
deployed instance of your application.

1.3 Target Audience

This guide assumes a basic knowledge and understanding of VMware vSphere and enterprise Java
applications.

 Architectural staff can use this document to gain an understanding of how the system will work as a
whole as they design and implement various components.

 Engineers and administrators can use this document as a catalog of technical capabilities.

1.4 Scope

This guide covers the following topics:

 Enterprise Java Applications on vSphere Architecture – This section provides a high level best
practice architecture for running enterprise Java applications on vSphere.

 Enterprise Java Applications on vSphere Best Practices – This section provides best practice
guidelines for properly preparing the vSphere platform to run enterprise Java applications on
vSphere. Best practices for the Design and Sizing of VMs, guest OS tips, CPU, memory, storage,
networking, and useful JVM tuning parameters are presented. Also covered are the various high
availability features in vSphere including VMware ESX™ host clusters, resource pools (horizontal
scalability and vertical scalability) along with the VMware Distributed Resource Scheduler (DRS).

 Enterprise Java on vSphere Troubleshooting Primer – There are times when you have to

troubleshoot a particular Java application problem when running on vSphere. The vSphere esxtop

utility is very informative when troubleshooting.

 FAQ: Enterprise Java Application on vSphere – In this section, we answer some frequently asked
questions about the deployment of the enterprise Java applications on vSphere.

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 6 of 20

2. Enterprise Java Applications on vSphere Architecture

This section provides details on best practice architecture for enterprise Java applications running on
vSphere. Enterprise Java applications are made of four main tiers. These are the:

 Load Balancers tier

 Web Servers tier

 Java Application Server tier

 DB Server tier

A highly scalable and robust Java application has all of these tiers running in VMware vSphere in order to
reap the full benefits of scalability features offered by vSphere. Figure 1 shows a multi-tier fully virtualized
enterprise Java applications architecture running on VMware vSphere.

Figure 1. Multi-tier Virtualized Enterprise Java Application Architecture

Each one of these tiers is running in a VM that is managed by VMware vSphere, which forms the key
building foundation. Best practices are discussed in this guide for vSphere features such as VMware HA,
DRS, VMware vMotion™, resource pools, hot plug/hot add, networking and storage.

The following are key architectural attributes of each tier:

 Load Balancer tier – Increasingly feature-rich load balancers are available that provide various load
balancing algorithms and API integration with VMware vSphere. This allows the enterprise Java
application architecture to scale on demand as traffic bursts occur.

 Web Server tier – The Web Server tier must be appropriately tuned, with the right number of HTTP
threads to service your anticipated traffic demands.

 Java Application Server tier – Many of the commonly used application servers have mechanisms to
help you tune the Java engine to meet traffic demands. If you have already tuned the available Java
Threads, JDBC configurations, and various JVM and GC parameters on physical machines, the
tuning information is transferrable as is for the vSphere deployment of enterprise Java applications.

 DB Server tier – Critical to meeting the uptime SLA of enterprise Java applications is having
appropriate high availability architecture for the DB server. DB servers can benefit from running on
vSphere—see the best practices for your DB server on vSphere. This guide covers best practices to
JDBC Connection Pool tuning requirements at the Java application server level that the DB server
needs to accommodate.

DB ServersJava ApplicationsLoad balancers Web Servers

High Uptime, Scalable, and Dynamic Enterprise Java Applications

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 7 of 20

3. Enterprise Java Applications on vSphere Best Practices

3.1 VM Sizing and Configuration Best Practices Overview

Enterprise Java applications are highly customizable, and consequently, a performance test has to be
conducted to establish best sizing.

It is a best practice to establish the size of your VM in terms of vCPU, memory and how many JVMs are
needed by conducting a thorough performance test that mimics your production workload profile. The
resulting VM from the vertical scalability (scale-up) performance test is referred to as the building block
VM. The building block VM is a good candidate template on which scaled-out (horizontally scaled) VMs
can be based.

3.2 vCPU for VMs Best Practices

Best Practice Description

BP1 –

VM Sizing and VM-to JVM
ratio through a
performance load test

Establish a workload profile and conduct a load test to measure how many
JVMs you can stack on a particular sized VM. In this test, establish a best
case scenario of how many concurrent transactions you can push through
a configuration before it can be safely deemed as a good candidate for
scaling horizontally in an application cluster.

BP2–

VM vCPU

CPU Overcommit

For performance-critical enterprise Java applications VMs in production
make sure the total number of vCPUs assigned to all of the virtual
machines does not cause greater than 80% CPU utilization on the ESX
host.

BP3 –

VM vCPU Do not over
subscribe to CPU cycles
that you don’t really need

 If your performance load test determines; for example, 2 vCPU is
adequate up to 70% CPU utilization, but instead you allocate 4 vCPU
to your VM, then potentially you have 2 vCPUs Idle, which is not
optimal.

 If the exact workload is not known, size the virtual machine with a
smaller number of vCPUs initially and increase the number later, if
necessary.

3.3 VM Memory Size Best Practice

To understand how to size memory for a VM you must understand the memory requirements of Java and
various segments within it. Figure 2 provides an illustration of these separate memory areas.

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 8 of 20

Figure 2. Single JVM deployed on One VM

 VM Memory = Guest OS Memory + JVM Memory

 JVM Memory = JVM Max Heap (-Xmx value) + JVM Perm Gen (-XX:MaxPermSize)

 + NumberOfConcurrentThreads * (-Xss)

where:

 Perm Gen is an area that is in addition to the -Xmx (Max Heap) value and is not GCed as it holds the

class level information about the code. IBM JVMs do not have Perm Gen area.

 The above VM Memory formula is an approximation of the main areas allocated. To more accurately
size you need to load test the Java application for additional memory requirements that may be
allocated due to NIO buffers: JIT code cache, classloaders, and verifiers. In particular, some Java
applications may use NIO buffers, which can have huge additional memory demands.

 The contents of a direct buffer are allocated from the guest operating system memory instead of the
Java heap, and non-direct buffers are copied into direct buffers for native I/O operations. Use load
testing to appropriately size the effect of these buffers.

 If you have multiple JVMs (N JVMs) on a VM then: VM memory = guest OS memory + N * JVM
memory.

JVM
Max
Heap
-Xmx

JVM
Memory

Perm Gen

Initial
Heap

Guest OS
Memory

VM
Memory

-XX:MaxPermSize

-Xms

Java Stack

-Xss
Per thread

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 9 of 20

Best Practice Description

BP4 –
VM memory sizing

 Whether you are using Windows or Linux as your guest OS, refer to
the technical specification of the various vendors for memory
requirements. It is common to see the guest OS allocated about 1GB
in addition to the JVM memory size. However, each installation may
have additional processes running on it, for example monitoring
agents, and you need to accommodate their memory requirements as
well. Figure 2 shows the various segments of JVM and VM memory,
and the formula summarizes VM Memory as:

VM Memory (needed) = guest OS memory + JVM Memory,

where JVM Memory = JVM Max Heap (-Xmx value) + Perm Gen

(-XX :MaxPermSize) + NumberOfConcurrentThreads * (-Xss)

 The -Xmx value is the value that you found during load testing for

your application on physical servers. This value does not need to
change when moving to a virtualized environment. Load testing your

application when deployed on vSphere will help confirm the best -

Xmx value.

 It is recommended that you do not overcommit memory because the
JVM memory is an active space where objects are constantly being
created and garbage collected. Such an active memory space requires
its memory to be available all the time. If you overcommit memory
ballooning or swapping may occur and impede performance.

 ESX host employs two distinct techniques for dynamically expanding
or contracting the amount of memory allocated to virtual machines.
The first method is known as memory balloon driver (vmmemctl). This
is loaded from the VMware Tools package into the guest operating
system running in a virtual machine. The second method involves
paging from a virtual machine to a server swap file, without any
involvement by the guest operating system.

In the page swapping method, when you power on a virtual machine, a
corresponding swap file is created and placed in the same location as

the virtual machine configuration file (VMX file). The virtual machine

can power on only when the swap file is available. ESX hosts use
swapping to forcibly reclaim memory from a virtual machine when no
balloon driver is available. The balloon driver may be unavailable
either because VMware Tools is not installed, or because the driver is
disabled or not running. For optimum performance, ESX uses the
balloon approach whenever possible. However, swapping is used
when the driver is temporarily unable to reclaim memory quickly
enough to satisfy current system demands. Because the memory is
being swapped out to disk, there is a significant performance penalty
when the swapping technique is used. Therefore, it is recommended
that the balloon driver is always enabled, but monitor to verify that it is
not getting invoked as that memory is overcommitted.

Both ballooning and swapping should be prevented for Java
applications. To prevent ballooning and swapping, refer to BP5 – Set
memory reservation for VM needs.

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 10 of 20

BP5 –
Set memory reservation
for VM memory needs

 JVMs running on VMs have an active heap space requirement that
must always be present in physical memory. Use the VMware vSphere
Client to set the reservation equal to the needed VM memory.

Reservation Memory = VM Memory = guest OS Memory + JVM
Memory

 You may set this reservation to the active memory being used by the
VM for a more efficient use of the amount of memory available. Or, a
simpler approach is to set the reservation equal to the total configured
memory of the VM.

BP6 –
Use Large Memory Pages

 Large memory pages help performance by optimizing the use of the
Translation Look-aside Buffer (TLB), where virtual to physical address
translations are performed. Use large memory pages as supported by
your JVM and your guest operating system. The operating system and
the JVM must be informed that you want to use large memory pages,
as is the case when using large pages in physical systems.

 Set the -XX:+UseLargePages at the JVM level for Sun HotSpot.

 On the IBM JVM it is -Xlp , and JRockit -XXlargePages .

 You also need to enable this at the guest OS level. For information,
see Large Page Performance: ESX Server 3.5 and ESX Server 3i
v3.5.

http://www.vmware.com/files/pdf/large_pg_performance.pdf
http://www.vmware.com/files/pdf/large_pg_performance.pdf

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 11 of 20

3.3.1 BP5-How to Set Memory Reservation

Set the memory reservation value in the vSphere Client to the size of memory for the virtual machine. In
Figure 3, the memory reservation is set to 2480MB. This virtual machine is always allocated this amount
of memory on any ESX host on which it runs.

To set the memory reservation select the VM, right-click and select Edit Settings > Resources tab.
Figure 3 shows how to set the memory reservation for a virtual machine in the vSphere Client.

Figure 3. Setting the Memory Reservation

3.4 VM Timekeeping Best Practices

Best Practice Description

BP7 –

Timekeeping

Use NTP Source

 Timekeeping can be different in virtual machines than on physical machines for
a variety of reasons (see Timekeeping in VMware Virtual Machines: VMware
ESX 4.0/ESXi 4.0, VMware Workstation 7.0.

 Timekeeping can have an effect on Java programs if they are sensitive to
accurate measurements over periods of time, or if they need a timestamp that
is within an exact tolerance (such as a timestamp on a shared document or
data item). VMware Tools contains features that are installable into the guest
operating system to enable time synchronization and the use of those tools is
recommended. The effects of timer interrupts are also discussed as the
frequency of those interrupts can have an effect on the performance of your
Java application.

http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 12 of 20

3.4.1 Configuration for Timekeeping Best Practices

 Synchronize the time on the ESX host with an NTP source. See Timekeeping in VMware Virtual
Machines: VMware ESX 4.0/ESXi 4.0, VMware Workstation 7.0.

 Synchronize the time in the virtual machine’s guest operating system:

o For Linux guest operating systems using an external NTP source, see Timekeeping in VMware
Virtual Machines: VMware ESX 4.0/ESXi 4.0, VMware Workstation 7.0.

o For Windows guest operating systems use W32Time. Refer to your Windows administration
guide for detailed information.

Lower the clock interrupt rate on the virtual CPUs in your virtual machines by using a guest operating
system that allows lower timer interrupts. Examples of such operating systems are RHEL 4.7 and later,
RHEL 5.2 and later and the SuSE Linux Enterprise Server 10 SP2. See Timekeeping best practices for
Linux guests for more information on timekeeping best practices for Linux.

 Use the Java features for lower resolution timing that are supplied by your JVM, such as the option
for the Sun JVM on Windows guest operating systems:

-XX:+ForceTimeHighResolution

 You can also set the _JAVA_OPTIONS variable to this value on Windows operating systems using

the technique given (useful in cases where you cannot easily change the Java command line).

 The following is an example of how to set the Sun JVM option. To set the _JAVA_OPTIONS

environment variable:

1. Click Start > Settings > Control Panel > System > Advanced > Environment Variables.

2. Click New under System Variables. The variable name is _JAVA_OPTIONS . The variable

value is -XX:+ForceTimeHighResolution .

3. Reboot the guest operating system to properly propagate the variable.

 Avoid using the /usepmtimer option in the boot.ini system configuration for Windows

guest operating systems that use an SMP HAL.

3.5 Vertical Scalability Best Practices

If an enterprise Java application deployed on vSphere experiences heavy CPU utilization and you have
determined that an increase in the vCPU count will help resolve the saturation, you can use vSphere hot
add to add additional vCPU.

Best Practice Description

BP8 –
Hot Add
CPU/Memory

 VMs with a guest OS that supports hot add CPU and hot add memory can take
advantage of the ability to change the VM configuration at runtime without any
interruption to VM operations. This is particularly useful when you are trying to
increase the ability of the VM to handle more traffic.

 Plan ahead and enable this feature. The VM must be turned off to have the hot
plug feature enabled, but when enabled you can hot add CPU and hot add
memory at runtime without VM shutdown (if the guest OS supports it).

 Refer to VM memory size best practices in Section 3.3.

 When you need to increase Java heap space, along with this is usually an
increase in vCPU count to get the best GC cycle performance. Keep in mind that
there are many other aspects to GC tuning and you should refer to your JVM
documentation.

http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1006427&sliceId=1&docTypeID=DT_KB_1_1&dialogID=131835784&stateId=0%200%20131839654
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1006427&sliceId=1&docTypeID=DT_KB_1_1&dialogID=131835784&stateId=0%200%20131839654

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 13 of 20

3.6 Horizontal Scalability, Clusters, and Pools Best Practices

Enterprise Java applications deployed on VMware vSphere can benefit from using vSphere features for
horizontal scalability using ESX host clusters, resource pools, host affinity and DRS.

Best Practice Description

BP9 –

Use ESX host cluster

 To enable better scalability use ESX host clusters.

 When creating clusters enable VMware HA and VMware DRS:

o VMware HA – Detects failures and provides rapid recovery for the
VM running in a cluster. Core functionality includes host monitoring
and VM monitoring to minimize downtime.

o VMware DRS – Enables vCenter Server to manage hosts as an
aggregate pool of resources. Cluster resources can be divided into
smaller pools for users, groups, and VMs. It enables vCenter to
manage the assignment of VMs to hosts automatically, suggesting
placement when VMs are powered on, and migrating running VMs
to balance load and enforce allocation policies.

 Enable EVC (for either Intel or AMD). EVC is Enhanced vMotion
Compatibility; it configures a cluster and its hosts to maximize vMotion
compatibility. When EVC is enabled, only hosts that are compatible
with those in the cluster may be added to the cluster.

BP10 –

Use resource pools

Multiple resource pools can be used within a cluster to manage compute
resource consumption by either reserving the needed memory for the VMs
within a resource pool or by limiting/restricting it to a certain level. This
feature also helps you meet quality of service and requirements.

For example, you can create a Tier-2 resource pool for the less critical
applications and a Tier-1 resource pool for business critical applications.

BP11 –

Affinity Rules

In addition to exiting anti-affinity rules, the VM-Host affinity rule was
introduced in vSphere 4.1. The VM-Host affinity rule provides the ability to
place VMs on a subset of hosts in a cluster. This is very useful in honoring
ISV Licensing requirements. Rules can be created so that VMs run on ESX
hosts in different blades for higher availability. Conversely, limit the ESX
host to one blade in case network traffic between the VMs needs to be
optimized by keeping them in one chassis location.

BP12 –

Use vSphere-aware load
balancers

vSphere makes it easy to add resources such as host and VMs at runtime.
It is possible to provision these ahead of time. However, it is simpler if you
use a load balancer that is able to integrate with vSphere APIs to detect
the newly added VMs and add them to its application load balancing pools
without downtime.

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 14 of 20

3.7 Inter-tier Configuration Best Practices

As discussed in Section 2, there are four critical technology tiers that sit on top of vSphere. These tiers
are the Load Balancer tier, the Web Server tier, the Java Application Server tier, and the DB Server tier.
The configurations for compute resources at each tier must translate to an equitable configuration at the
next tier. For example, if the Web Server tier is configured to handle 100 HTTP requests per second, then
of those requests you must determine how many Java application server threads are needed, and in turn
how many DB connections are needed in the JDBC Pool configuration.

Best Practice Description

BP13 –

Establish appropriate
thread ratios that prevents
bottlenecks (HTTP
threads:Java threads:DB
connections)

 This is the ratio of HTTP threads to Java threads to DB connections.

 Establish initial setup by assuming that each layer requires a 1:1:1
ratio of HTTP threads:Java Threads:DB-connections, and then based
on the response time and throughput numbers, adjust each of these
properties accordingly until you have satisfied your SLA objectives.

 For example, if you have 100 HTTP requests submitted to the Web
Server initially, assume that all of these will have an interaction with
Java threads, and in turn, DB connections. Of course, in reality, during
your benchmark you will find that not all HTTP threads are submitted
to the Java application server, and in turn, not all Java application
server threads each require a DB connection. That is, you may find
your ratio for 100 requests translates to 100 HTTP threads:25 Java
threads:10 Db connections, and this depends on the nature of your
enterprise Java application behavior. Benchmarking helps you
establish this ratio.

BP14 –

Load balancer algorithm
choice and VM symmetry

 Take into account the available algorithms of your load balancer. Make
sure that when using the scale-out approach all of your VMs are
receiving an equal share of the traffic. Some industry standard
algorithms are Round Robin, Weighted Round Robin, Least
Connections, and Least Response Time. You may want to initially
default to Least Connections and then adjust as you see fit in your
load test iterations.

 Keep your VMs symmetrical in terms of the size of compute resource.
For example, if you decide to use 2 vCPU VMs as a repeatable,
horizontally scalable building block, this helps with your load balancing
algorithm, working more effectively as opposed to if there were a pool
of non-symmetrical VMs for one particular application. That is, mixing
2 vCPU VMs with 4 vCPU VMs in one load balancer-facing pool is
non-symmetrical and the load balancer has no notion of weighing this
unless you configure for it at the Load Balancer level, which is time
consuming.

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 15 of 20

3.8 High Level vSphere Best Practices

It is important to follow the best practices. See Performance Best Practices for VMware vSphere 4.0. The
following is a summary of some of the key networking, storage and hardware-related best practices that
are commonly used.

3.8.1 vSphere Networking Best Practices

Best Practice Description

BP15 –
vSphere Networking

Follow vSphere networking best practices. In addition to Performance Best
Practices for VMware vSphere 4.0, refer to VMware Virtual Networking
Concepts and Best Practices.

3.8.2 vSphere Storage Best Practices

Best Practice Description

BP16 –
vSphere Storage

 VMware recommends a minimum of four paths from an ESX host to a
storage array, which means the host requires at least two HBA ports.

 Follow vSphere storage best practices. For detailed description of VMware
storage best practices refer to the VMware SAN System Deployment and
Design Guide.

3.8.3 vSphere Server Hardware Configuration Best Practices

Best Practice Description

BP17 –
ESX Host Hardware

 For hardware configuration best practices, refer to VMware vCenter Server
Performance and Best Practices Guide. Also see The CPU Scheduler in
VMware ESX4.1 Guide.

 Disable any other power-saving mode in the BIOS.

 NUMA Considerations – IBM (X-Architecture), AMD (Opteron-based), and
Intel (Nehalem) non-uniform memory access (NUMA) systems are
supported by ESX. On AMD Opteron-based systems, such as the HP
ProLiant DL585 Server, BIOS settings for node interleaving determine
whether the system behaves like a NUMA system or like a uniform memory
accessing (UMA) system.

 By default, ESX NUMA scheduling and related optimizations are enabled
only on systems with a total of at least four CPU cores and with at least two
CPU cores per NUMA node.

 Virtual machines with a number of vCPUs equal to or less than the number
of cores in each NUMA node are managed by the NUMA scheduler and
have the best performance.

 Hardware Bios – Verify the BIOS is set to enable all populated sockets, and
enable all cores in each socket.

 Enable Turbo Mode if your processors support it.

 Make sure hyper-threading is enabled in the BIOS.

http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.0.pdf
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.0.pdf
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.0.pdf
http://www.vmworld.com/docs/DOC-5122
http://www.vmworld.com/docs/DOC-5122
http://www.vmware.com/files/pdf/techpaper/SAN_Design_and_Deployment_Guide.pdf
http://www.vmware.com/files/pdf/techpaper/SAN_Design_and_Deployment_Guide.pdf
http://www.vmware.com/files/pdf/techpaper/vsp_41_perf_VC_Best_Practices.pdf
http://www.vmware.com/files/pdf/techpaper/vsp_41_perf_VC_Best_Practices.pdf
http://www.vmware.com/files/pdf/techpaper/VMW_vSphere41_cpu_schedule_ESX.pdf
http://www.vmware.com/files/pdf/techpaper/VMW_vSphere41_cpu_schedule_ESX.pdf

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 16 of 20

4. Troubleshooting Primer

Troubleshooting problems with enterprise Java applications involves the investigation of each of the tiers,
the Load balancer tier, The Web Server tier, the Java Application Server tier, the DB Server tier, and
vSphere. VMware vSphere, in turn, has a dependency on networking and storage. The next few sections
provide information about how to begin troubleshooting, and effective utilities you can use.

4.1 Open a Support Request Ticket

If you suspect the VMware vSphere is not configured optimally and is cause of the bottleneck, file a
support request (http://www.vmware.com/support/contacts/file-sr.html). In addition, you may want to:

 Follow the troubleshooting steps outlined in the Performance troubleshooting guide for ESX4.0.

 Verify that you have applied all of the best practices discussed in this Best Practices Guide.

 Run the vm-support utility. Execute the following command at the service console:

vm-support -s

This collects necessary information so that VMware can help diagnose the problem. It is best to run
this command at the time when the symptoms occur.

4.2 Troubleshooting Techniques for vSphere with esxtop

4.2.1 Performance Guides and References

 Performance Troubleshooting for VMware vSphere 4 and ESX 4.0
(http://communities.vmware.com/docs/DOC-10352)

 Interpreting esxtop 4.1 Statistics (http://communities.vmware.com/docs/DOC-11812)

http://www.vmware.com/support/contacts/file-sr.html
http://communities.vmware.com/docs/DOC-10352
http://communities.vmware.com/docs/DOC-10352
http://communities.vmware.com/docs/DOC-10352
http://communities.vmware.com/docs/DOC-11812
http://communities.vmware.com/docs/DOC-11812

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 17 of 20

4.2.2 esxtop Primer

See Interpreting esxtop Statistics for detailed information about metrics. The following table summarizes
some of the metrics you may use when troubleshooting.

Display Metric Threshold Description

CPU %RDY 10 Over-provisioning of vCPU, excessive usage of vSMP or
a limit (check %MLMTD) has been set. This %RDY value
is the sum of all vCPUs %RDY for a VM. For example, if
the max value of %RDY of 1vCPU is 100% and 4vCPU is
400%. If %RDY is 20 for 1 vCPU then this is problematic,
as it means 1 vCPU is waiting 20% of the time for
VMkernel to schedule it.

CPU %CSTP 3 Excessive usage of vSMP. Decrease amount of vCPUs
for this particular VM.

CPU %MLMTD 0 If larger than 0 the worlds are being throttled. Possible
cause is a limit on CPU.

CPU %SWPWT 5 VM waiting on swapped pages to be read from disk. You
may have overcommitted memory.

MEM MCTLSZ 1 If larger than 0, host is forcing VM to inflate balloon driver
to reclaim memory as the host is overcommitted.

MEM SWCUR 1 If larger than 0 host has swapped memory pages in the
past. You may have overcommitted.

MEM SWR/s 1 If larger than 0 host is actively reading from swap. This is
caused by excessive memory overcommitment.

MEM SWW/s 1 If larger than 0 host is actively writing to swap. This is
caused by excessive memory overcommitment.

MEM N%L 80 If less than 80, VM experiences poor NUMA locality. If a
VM has memory size greater than the amount of memory
local to each processor, the ESX scheduler does not
attempt to use NUMA optimizations for that VM.

NETWORK %DRPTX 1 Dropped packages transmitted, hardware is overworked
due to high network utilization.

NETWORK %DRPRX 1 Dropped packages received, hardware is overworked
due to high network utilization.

DISK GAVG 25 Look at DAVG and KAVG as GAVG = DAVG + KAVG.

DISK DAVG 25 At this level you have disk latency that is likely to be
caused by storage array.

DISK KAVG 2 Disk latency caused by the VMkernel. High KAVG usually
means queuing. Check QUED.

DISK QUED 1 Queue has maxed out. Possibly queue depth is set too
low. Check with array vendor for optimal queue value.

DISK ABRTS/s 1 Aborts issued by VM because storage is not responding.
For Windows VMs this happens after 60-second default.
Can be caused by path failure, or storage array Is not
accepting IO.

DISK RESET/s 1 The number of commands resets per second.

http://communities.vmware.com/docs/DOC-11812

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 18 of 20

4.3 Java Troubleshooting Primer

Refer to your JVM documentation for troubleshooting guides.

The following sections provide information about how to begin troubleshooting. Information is given about
some severe Java application problems which are GC/memory leakage-related, and some that are thread
contention-based. For JDBC-based errors, refer to the JDBC driver provided to you by the database
vendor. Of particular importance for performance are errors leading to OutofMemory, Stackoverflow, and
Thread Deadlock.

4.3.1 Java Memory Problem Troubleshooting

Consider an example where you observe load increases and decreases over a period of time. If memory
continues to build without reclamation (in the worst case), or a GC reclamation occurs but not everything
is reclaimed, you may have a memory leak. This is very likely if these symptoms persist to a point where
the application suffers from an OutofMemory error. In this case you need to investigate the GC frequency
and setting.

 To turn on GC verbose mode:

o verbose:gc — prints basic information about GC to the standard output.

o -XX:+PrintGCTimeStamps – Prints the times that GC executes.

o -XX:+PrintGCDetails – Prints statistics about different regions of memory in the JVM.

o -Xloggc:<file> – Logs the results of GC in the specified file.

 Re-inspect the -Xmx , -Xms , -Xss settings.

 If you’re using JDK 6, you can use tool called jmap on any platform. Running jmap may add

additional load on your environment so plan for the best time to run it.

 If you’re using JDK 5:

o If you’re running Linux with JDK 5 you can use jmap.

o If you’re using JDK 5 update 14 or later, you can use the -XX:+HeapDumpOnCtrlBreak

option when starting JVM, then use the Ctrl+Break key combination on Windows to dump the
heap.

4.3.2 Java Thread Contention Problem

If you suspect that your enterprise Java application is suffering from long pauses, or just has general
response time issues to the point where the JVM needs to be restarted to resolve the issue, you may
need to also inspect the Java thread dump. You can obtain a Java thread dump by pressing Ctrl+Break

for a Windows OS or in Linux by issuing Kill -3 on the Java process ID. It is important to take the

thread dump right at the point where problematic symptoms appear. This is especially true if you are
conducting a benchmark load test—take the thread dump at max peak load, and inspect the behavior of
the various application threads.

There are many widely used thread analysis tools that interpret the thread dump and highlight in red the
hot threads or threads waiting for a lock. You can begin your code investigation from that point and follow
the call stack.

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 19 of 20

5. FAQ: Enterprise Java Applications on vSphere

With UNIX-based hardware I have very large machines running all of my Java applications. What
should be my migration sizing strategy and what are the VMware vSphere maximums that I need
to know about?

 One of the most important steps is to conduct a load test to help you determine the ideal individual
VM size and how many JVMs you can stack up (vertical scalability). Based on this repeatable building
block VM you can scale-out to determine what is best for your application traffic profile.

 Know the VMware vSphere maximums. See Configuration Maximums: VMware vSphere 4.1.

The following table provides a summary of maximums for per VM, per Host, and per vCenter.

vSphere Configuration Maximum

Per VM

 8 vCPUs

 255GB

 2TB of storage minus 512 bytes

Per Host 512 vCPUs

 320 VMs

 25 vCPUs per core

Per vCenter 1000 hosts

 10000 Powered on VMs

 15000 registered VMs

 10 Linked vCenter Servers

 3000 hosts in linked vCenter servers

 30000 powered on VMs in linked vCenter Servers

 50000 registered VMs in linked vCenter Servers

 100 concurrent vSphere Clients

 400 hosts per datacenter

What decisions must be made due to virtualization?

You have to determine the size of the repeatable building block VM. This is established by benchmarking,
along with total scale-out factor. Determine how many concurrent users each single vCPU configuration
of your application can handle, and extrapolate that to your production traffic to determine the overall
compute resource requirement. Having a symmetrical building block; for example, every VM having the
same number of vCPUs, helps keep load distribution from your load balancer even. Essentially, your
benchmarking test helps you determine how large a single VM should be (vertical scalability) and how
many of these VMs you will need (horizontal scalability).

http://www.vmware.com/pdf/vsphere4/r41/vsp_41_config_max.pdf

Enterprise Java Applications on VMware
Best Practices Guide

© 2010 VMware, Inc. All rights reserved.

Page 20 of 20

You need to pay special attention to scale-out factor, and see up to what point it is linear within your
application running on top of VMware. Enterprise Java applications are multi-tier and bottlenecks can
appear at any point along the scale out performance line and quickly cause non-linear results. The
assumption of linear scalability may not always be true, and it is essential to load test a pre-production
replica (production to be) of your environment to accurately size for you traffic.

I have conducted extensive GC sizing and tuning for our current enterprise Java application
running on physical. Do I have to adjust anything related to sizing when moving this Java
application to a virtualized environment?

 No. All tuning that you would perform for your Java application on physical is transferrable to your
virtual environment. However, because virtualization projects are typically about driving a high
consolidation ratio, it is advisable that you conduct adequate load testing to establish your ideal
compute resource configuration for individual VMs, number of JVMs within a VM and overall number
of VMs on the ESX host.

 Additionally, because this type of migration involves an OS/platform change as well as a JVM vendor
change, it is advisable to read through Section 2 of this document along with your vendors tuning
advice for both OS and JVM.

How many and what size of virtual machines will I need?

This depends on the nature of your application. We most often see 2 vCPU VMs as a common building
block for Java applications. One of the guidelines is to tune your system for more scale-out as opposed to
scale up. This rule is not absolute as it depends on your organization’s architectural best practices.
Smaller more scaled-out VMs may provide better overall architecture, but you will incur additional guest
Os licensing costs. If this is a constraint then you can tune towards larger 4 vCPU VMs and stack more
JVMs on them.

What is the correct number of JVMs per virtual machine?

 There is no one definite answer. This largely depends on the nature of your application. The
benchmarking you conduct can determine the limit of the number of JVMs can be stacked up on a
single VM.

 The more JVMs you put on a single VM the more JVM overhead/cost of initializing a JVM is incurred.
Alternately, instead of stacking up multiple JVMs within a VM, you can instead increase the JVM size
vertically by adding more threads and heap size. This can be achieved if your JVM is within an
application server such as Tomcat. Then, instead of increasing the number of JVMs you can increase
the number of concurrent threads available and resources that a single Tomcat JVM services for your
n-number of applications deployed and their concurrent requests per second. The limitation of how
many applications you can stack up within a single application server instance/JVM is bounded by
how large you can afford your JVM heap size to be and performance. The trade-off of very large JVM
heap size beyond 4GB needs to be tested for performance and GC cycle impact. This concern is not
specific to virtualization as it equally applies to physical server setup.

